Multiplicative Cauchy functional equation in the cone of positive-definite symmetric matrices
نویسندگان
چکیده
منابع مشابه
Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices
In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces, which are the Einstein and M"{o}bius gyrovector spaces. We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...
متن کاملDDtBe for Band Symmetric Positive Definite Matrices
We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...
متن کاملEstimating Symmetric, Positive Definite Matrices in Robotic Control
In a number of contexts relevant to control problems, including estimation of robot dynamics, covariance, and smart structure mass and stiffness matrices, we need to solve an over-determined set of linear equations AX ≈ B with the constraint that the matrix X be symmetric and positive definite. In the classical least squares method, the measurements of A are assumed to be free of error. Hence, ...
متن کاملEstimation of symmetric positive-definite matrices from imperfect measurements
In a number of contexts relevant to control problems, including estimation of robot dynamics, covariance, and smart structure mass and stiffness matrices, we need to solve an over-determined set of linear equations AX ≈ B with the constraint that the matrix X be symmetric and positive definite. In the classical least squares method the measurements of A are assumed to be free of error, hence, a...
متن کاملDeconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices
Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 2003
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap82-1-1